# OPTIMIZATION OF A BUSINESS MANAGEMENT SYSTEM

## ABUAYYASH Hosni, IBADOF Alin-Gabriel

Faculty: Industrial Engineering and Robotics, Specialization: Industrial Engineering, Year: 2nd, E-mail: <a href="mailto:Hosni.ayyash@gmail.com">Hosni.ayyash@gmail.com</a>

ABSTRACT: The aim of this paper is to embed knowledges of Modelling & Simulation, Economics and Databases into one application regarding business management system optimization to apply what we have learned and see the integrity of them together as a whole. This paper takes the idea of a business model that should help a business production line to operate efficiently and deliver better quality services to their customers by pointing a few concepts we have learned in the mentioned disciplines. The power of databases on the Cloud and the services of IBM's "Watson Studio" was used to present these papers. In order to reach our objective, we have simulated an interactive unit for a business production line where we needed to populate with data for a whole year so we can apply some analytical statistics in order to help the management of the business to take better decisions. [6], [7]

KEYWORDS: economics, business management, databases, optimization, PED

### 1. Introduction

The focus of this paper is a production line database which has been simulated to integrate the orders, stocks of raw materials and logistics, labour, suppliers, and sales to build a virtual model. By creating an algorithm to generate orders for one year for both production lines in this virtual model, we took in concern the integrity functions of the whole system by using SQL language. The purpose of this is to subtract reports of data for the whole year (employees, sales, costs, revenue, profits, taxes, and prices). The next step was to model a few views out of this data in order to show the management of this production line some economic aspects like salary checks based on the current Romanian system, the diverse sales taxes depending on the raw materials, highlighting the variable cost and fixed costs. And at last, Modelling & Simulation ideas were used to simulate sales for 23 years on Microsoft's Excel [8] and to connect it back to the relevant database where Python has been used to see the effect of changing the price on the quantity sold in purpose to increase the revenues by applying the concepts of economics "Price Elasticity of Demand" and "Revenue elasticity of Demand" through tables and graphs. Although the we have created on our own the database for the simulation, as well as the calculations, we needed to use an open-source code for Python to plot the graph (Price vs. Quantity) [4].

## 2. Modules

After carefully analysing a few small to middle-size business management systems we have gathered the required information for building our database which contains 16 main tables and another 8 auxiliary tables to help create the algorithm for populating the modelled database.

The stocks tables have been created to handle the raw materials needed in the production line as well as the logistics and housekeeping.

Connected to these stocks, are two lists of products offered for sale through an order table where the employees are placing the order by using a trigger that provides the ability to check the availability of raw materials in the stock and then subtracting these quantities from stocks and placing the equivalent quantities in a demanding table in advance for next week's order to the suppliers with the purpose of refilling the stock again to keep the flow of production. By the end of this operation, the mentioned trigger will assure the registering of the ordered product into the receipt table on the spot with the specific date and time.

The employee table has been created to hold information about name, salary, wage, position, address, IBAN, and the contact data. Again, this table is a part of a system that is connected with the objective of assuring the flow of production (placing orders, performing the production line's operation, receiving from supplier and of course managing the production system) while respecting a schedule determined by a check-in – check-out table (this table also helps to calculate the salaries at the end of each month).

Algorithms used for generating orders took in concern the spatial and human resources capacity on the location and the time related to the production and services provided day by day in a rational way where it can be that certain days are more busy than others, as well as a period of each day, and at last the season of the year. These algorithms use a different trigger to operate the orders because they need to randomize the mentioned times, which prevent using the regular trigger.

Implementation of this production line model was easier by using the knowledge gained throughout the Modelling & Simulation course where we have learned there is no perfect system, and always there will be a margin of error which we took in consideration while building our algorithms for populating the production database. The course also offered us the tools for modelling the data which is required to perform some analytical reports and applying, of course, few concepts we have learned in economics. We used this because our populated database performed a production operation just for one year while we needed data for many years in order to test the effect of changing the prices of the business unit on the quantity sold with the purpose of making the right decision and as a result making more revenue.

The output reports of the populated data in the production database have been established respecting the economic aspects (See Fig. 1)

- Price
- Cost
  - Fixed cost
    - Rent
    - Utilities
    - Salaries
    - Housekeeping
    - Variable cost
      - Raw materials
      - Tax of production line 1, 2
      - Error of production line 1, 2
- Revenue
  - o Revenue production line 1, 2
- Profit

| DATE       | REVENUE_KITCHEN | COST_KITCHEN | TAX_KITCHEN | ERROR_KITCHEN | REVENUE_BAR | COST_BAR | TAX_BAR  | ERROR_BAR | FIX_COST    | PROFITE     |
|------------|-----------------|--------------|-------------|---------------|-------------|----------|----------|-----------|-------------|-------------|
| 2019-03-04 |                 | 956 9990     | 150.8500    | 120.52        | 2095.00     | 515.1400 | 361.2300 | 71.74     | 2099.654400 | 1822.166600 |
| 2019-03-05 | 3052.00         | 1069.4930    | 152,6000    | 153.98        | 2037 00     | 518.1600 | 348.2500 | 32.86     |             | 1701.702600 |
|            |                 |              |             |               |             |          |          |           |             |             |
| 2020-02-29 |                 | 1661 2680    | 262 9000    | 140.92        | 3881.00     | 924.4200 | 661 0900 | 84.10     | 2215.344000 |             |

Fig. 1. Sales Report

Revenue calculated:

$$Revenue1 = quantity sold1 * price$$
 (1)

$$Revenue2 = quantity sold2 * price$$
 (2)

Tax:

$$Tax1 = revenue * 0.05 (3)$$

$$Tax2 = revenue * 0.19 (4)$$

Profit:

Profit = Revenue1 + Revenue2 - Variable cost - Fixed cost - Tax1 - Tax2 (5) Fixed cost:

Fixed 
$$cost = \frac{((utilities + rent + salaries + housekeeping cost) per month)}{no.of the month's working days}$$
 (6)

Cost is calculated by summing the cost of raw materials per unit produced. Price is established based on the list of products. Error cost is calculated by summing the cost of raw materials per unsold unit. Salaries have been calculated as the way done in the Romanian salary ticket (See Fig. 2).

|   | DATE    | Name            | Wage/Hour | No_hours | SALARY_BRUT | CASS | CAS  | RETINUT | BAZA | IMPOZIT | REVINE |
|---|---------|-----------------|-----------|----------|-------------|------|------|---------|------|---------|--------|
| 0 | 2019-03 | Hosni Abuayyash | 45.45     | 160      | 7272        | 727  | 1818 | 2545    | 4727 | 473     | 4254   |
| 1 | 2019-03 | Alin Ibadof     | 32.95     | 176      | 5799        | 580  | 1450 | 2030    | 3769 | 377     | 3393   |

.....

| 14 | 2019-03 | Anne Marie    | 15.91 | 168 | 2673 | 267 | 668 | 936 | 1737 | 174 | 1564 |
|----|---------|---------------|-------|-----|------|-----|-----|-----|------|-----|------|
| 15 | 2019-03 | Lionel Reeves | 15.91 | 168 | 2673 | 267 | 668 | 936 | 1737 | 174 | 1564 |

Fig. 2. Salary tickets table

$$Wage/Hour = \frac{salary \ per \ month}{176 \ hours}$$
 (7)
$$No\_hours = \sum daily \ checked \ in \ and \ checked \ out \ hours$$
 (8)
$$Salary\_brut = wage/hour * no\_hours$$
 (9)
$$CASS = salary \ brut * 0.10$$
 (10)
$$CAS = salary \ brut * 0.25$$
 (11)
$$Retinut = CASS + CAS$$
 (12)
$$BAZA = salary \ brut - retinut$$
 (13)
$$Impozit = baza * 0.10$$
 (14)
$$Revine = baza - impozit$$
 (15)

Statistical description for the whole year sales report, shown in Fig. 3.

|       | REVENUE_KITCHEN | COST_KITCHEN | TAX_KITCHEN | ERROR_KITCHEN | REVENUE_BAR | COST_BAR    | TAX_BAR    | ERROR_BAR  | FIX_COST    | PROFITE     |
|-------|-----------------|--------------|-------------|---------------|-------------|-------------|------------|------------|-------------|-------------|
| count | 363.000000      | 363.000000   | 363.000000  | 363.000000    | 363.000000  | 363.000000  | 363.000000 | 363.000000 | 363.000000  | 363.000000  |
| mean  | 3430.024793     | 1196.901116  | 171.501240  | 101.097576    | 2409.129477 | 580.623278  | 415.437631 | 56.368044  | 2230.845752 | 2085.285970 |
| std   | 1032.893988     | 364.875792   | 51.644699   | 44.917280     | 734.397658  | 176.615029  | 128.332714 | 21.416697  | 71.777349   | 1047.968691 |
| min   | 1305.000000     | 432.279000   | 65.250000   | 9.000000      | 1034.000000 | 238.590000  | 175.230000 | 16.400000  | 2106.654400 | 79.807000   |
| 25%   | 2915.500000     | 991.968500   | 145.775000  | 70.060000     | 2017.000000 | 476.240000  | 340.030000 | 40.745000  | 2210.344000 | 1662.206000 |
| 50%   | 3346.000000     | 1166.021000  | 167.300000  | 95.960000     | 2356.000000 | 570.250000  | 406.750000 | 55.350000  | 2226.344000 | 2016.666000 |
| 75%   | 3807.500000     | 1359.615000  | 190.375000  | 125.020000    | 2665.000000 | 645.650000  | 464.305000 | 69.755000  | 2324.033600 | 2373.504000 |
| max   | 6472.000000     | 2393.219000  | 323.600000  | 289.060000    | 4943.000000 | 1185.230000 | 858.390000 | 156.360000 | 2337.033600 | 4978.933000 |

Fig. 3. Statistical report for sales

## 3. Price Elasticity of Demand (PED)

Price elasticity of demand is an economic measure of the change in the quantity demanded or purchased of a product in relation to its price change. [1]

We used the output data of our simulated business production line to estimate Price Elasticity of Demand and the Price Elasticity of Revenue. Therefore, because we have populated this simulation for one-year orders, it was required to model more data for another 22 years, where we have done the following:

- ⇒ Price: We have 18 items on the product list offered for sale from which we have taken the mean of the maximum and the minimum price;
- ⇒ Quantity sold: the output of the generated data was for one year, depending on counting the timestamp from each receipt. (See Fig. 4)



Fig. 4. Quantity Sold per month

The mentioned data has been moved through a Comma Separated Values file (.csv), and then by using a pivot table on Excel we got a summarization for the quantity sold each quarter of the year. Using this we have calculated the mean of those quarters and we plugged it to the top of a modelled table as the first quarter for the year 1997 followed with the mean price.

We decided the value 1.0124 for price percentage incrementation and we added to it the "Random" Excel built-in function multiplied with 0.5, multiplied again to a (-1,1) "Randombetween" function.

For quantity sold, the value 0.988 has been decided as a decremented percentage multiplied with the quantity from the modelled table in addition to "Randombetween(-1000,1000)" function. The output value was rounded to an accuracy of 0 decimals.

Both equations have been extended starting from the first season of 1997 until the last season of 2019, as well as containing the corresponding year and season number.

This table has been uploaded to the IBM's Cloud, where our simulated production database is located.

At the end, the connection to IBM's Watson Studio service was established where we used a Python notebook to perform some functions to display the concept of price elasticity of demand, through tables and graphs, the outputs shown in table of Fig. 5 and graph of Fig. 6.

|    | year | Quarter_x | QUANTITY | price    |
|----|------|-----------|----------|----------|
| 0  | 1997 | 1         | 17243    | 49.0000  |
| 1  | 1997 | 2         | 16425    | 49.1217  |
| 2  | 1997 | 3         | 15736    | 49.6059  |
| 3  | 1997 | 4         | 15526    | 50.5604  |
|    |      |           |          |          |
| 91 | 2019 | 4         | 5710     | 145.3714 |

Fig. 5. The generated model of the changing in price and quantity seasonally through 23 years

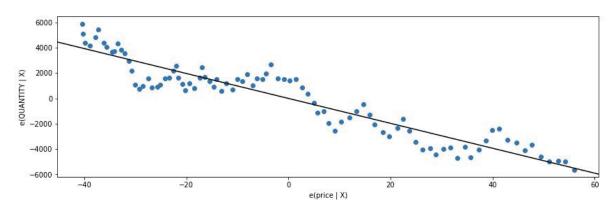



Fig. 6. Graphical representation of price corresponding to quantity

To demonstrate the concept of price elasticity of demand (PED) is required to calculate the price through equation (17)

$$PED = \frac{\%Q_{sold}}{\%P} = \frac{\frac{\Delta Q_{sold}}{Q_{sold0}}}{\frac{\Delta P}{P_0}} = \frac{\Delta Q_{sold}}{\Delta P} \cdot \frac{P_0}{Q_{sold0}}$$
(16)

After that, revenue has been calculated for each season using the following equation: Revenue = price \* quantity sold

The resulting revenue values have been added as a column to the table mentioned before.

To find out the price elasticity of revenue (PER), we have used the following formula:
$$PER = \frac{\%R}{\%P} = \frac{\frac{\Delta R}{R_0}}{\frac{\Delta P}{P_0}} = \frac{\Delta R}{\Delta P} \cdot \frac{P_0}{R_0}$$
(18)

Where "R" refers to the revenue and "P" refers to the price. The result is the following:

| Date       | QUANTITY | price    | PED        | Revenue      | RED        |
|------------|----------|----------|------------|--------------|------------|
| 1997-03-03 | 17243    | 49.0000  | NaN        | 8.449070e+05 | NaN        |
| 1997-06-02 | 16425    | 49.1217  | -19.100555 | 8.068239e+05 | -18.147994 |
| 1997-09-01 | 15736    | 49.6059  | -4.255616  | 7.805984e+05 | -3.297564  |
| 1997-12-01 | 15526    | 50.5604  | -0.693557  | 7.850008e+05 | 0.293098   |
| ***        |          | ***      | 1220       | laro.        | ***        |
| 2019-12-02 | 5710     | 145.3714 | -8.525656  | 8.300707e+05 | -7.631373  |

Fig. 7. Price Elasticity of Demand and Revenue Elasticity of Demand along 23 years

### 5. Conclusion

Price elasticity of revenue is an important parameter like the price elasticity of demand. No matter what a production line business is, when there is a discussion about the revenue, any management in charge's desire is to choose the price that maximizes the revenue and consequently the profit. For this purpose, we have decided to describe the price elasticity of demand which is defined as the percentage change in price divided on the percentage change in quantity sold.

## 6. References:

- [1]. WILL KENTON (2020), Price Elasticity of Demand, <a href="https://www.investopedia.com/terms/p/priceelasticity.asp">https://www.investopedia.com/terms/p/priceelasticity.asp</a>, Accessed on 07.05.2020
- [2]. https://en.wikipedia.org/wiki/Elasticity (economics), Accessed on 07.05.2020
- [3] https://en.wikipedia.org/wiki/Price elasticity of demand, Accessed on 07.05.2020
- [4]. Susan Li (Sep 1, 2018), Price Elasticity of Demand, Statistical Modeling with Python, <a href="https://towardsdatascience.com/calculating-price-elasticity-of-demand-statistical-modeling-with-python-6adb2fa7824d">https://towardsdatascience.com/calculating-price-elasticity-of-demand-statistical-modeling-with-python-6adb2fa7824d</a>, Accessed on 07.05.2020
- [5]. https://en.wikipedia.org/wiki/IBM cloud computing, Accessed on 07.05.2020
- [6]. https://www.ibm.com/cloud/db2-on-cloud/, Accessed on 07.05.2020
- [7]. https://www.ibm.com/cloud/watson-studio, Accessed on 07.05.2020
- [8]. https://en.wikipedia.org/wiki/Microsoft Excel, Accessed on 07.05.2020

#### 7. Abbreviations

The following symbols are used in the work:

PED = Price Elasticity of Demand

PER = Price Elasticity of Revenue

CASS = Contribuția de asigurări sociale

CAS = Contribuția de asigurări sociale de sănătate

 $Q_{sold} = Quantity Sold$ 

 $Q_{sold0}$  = Initial Quantity Sold